X

Pierwszy programowalny procesor kwantowy

03 Dec 2009 00:09 BEBelialek
  • Helpful post? (0)
    Pierwszy programowalny procesor kwantowy

    W przyszłości komputery kwantowe będą w stanie rozwiązać w kilka sekund zadania na które współczesny komputery potrzebują całych lat. Naukowcy z NIST (National Institute of Standards and Technology) uczynili wielki krok w realizacji urządzenia, nad którym trwają nieustanne prace od lat 80tych ubiegłego wieku, prezentując pierwszy "uniwersalny" programowalny procesor kwantowy. Innymi słowy powstał pierwszy procesor, który jest w stanie obsłużyć dowolny zbiór instrukcji dla więcej niż jednego bitu kwantowego (kubita). O tym jak szybki jest postęp w tej dziedzinie nauki może świadczyć fakt, iż pierwszy bardzo prymitywny procesor kwantowy mogący pracować jedynie w trybie jednozadaniowym ujrzał światło dzienne zaledwie niecały rok temu.

    Pierwszy programowalny procesor kwantowy

    Zespół naukowców z NIST stworzył 160 rożnych procesów na 2 kubitach. Chociaż jest nieskończona ilość możliwych 2-kubitowych programów, ten zestaw 160 procesów jest dość spory i na tyle zróżnicowany aby reprezentować je wszystkie - czyniąć tym samym procesor "uniwersalnym". Naukowcy użyli generatora losowych liczb w celu wyboru procesu do wykonania, więc wszystkie programy miały taką samą szansę wyboru.

    Losowe programy unikały możliwości wystąpienia biasu w testowaniu procesora, na wypadek gdyby niektóre programy działały lepiej albo produkowały dokładniejsze odpowiedzi niż inne. Każdy program operował dokładnie średnio 79 procent czasu na 900 przebiegów, a każdy przebieg trwał ok 39 ms. W celu udoskonalenia procesora oraz jakości wykonywanych operacji, naukowcy porównywali zmierzone wartości zwrócone przez program do idealnych, teoretycznych wyników uzyskanych klasycznymi metodami matematycznymi. Programy nie wykonywały łatwo dających się opisać matematycznych obliczeń - wykonywały one jedno-kubitowe "rotacje" i dwu-kubitowe zapętlenia. Przyklad rotacji: jeśli kubit jest wyrażony jako punkt na kuli na północnym jej krańcu reprezentowanym przez 0, na południowym jako 1, równik jako wyrównana superpozycja 0 i 1, to punkt może być obrócony do innej lokacji na kuli - na przykład z północnej do południowej półkuli reprezentując takie położenie poprzez podanie wartości bardziej zbliżonej do 1 niż do 0.

    Osobiście to dla mnie wielkie zaskoczenie - jeszcze nie tak dawno mój wykładowca fizyki prezentując działanie studni kwantowej szczerze wątpił w rychły rozwój elektroniki kwantowej, a tutaj proszę... W związku z perspektywą błyskawicznego rozkładu dużych liczb na iloczyn liczb pierwszych, zaczynałbym się poważnie martwić kwestią bezpieczeństwa wszelakich transakcji elektronicznych, i zaczął zastanawiać nad zabezpieczeniami, któremu nie dadzą rady komputery przyszłości.

    Źródło: Link
  • #2 03 Dec 2009 17:09
    Svir69
    Level 9  
    Helpful post? (0)
    Czy mógłby pan przybliżyć o co kaman z tymi kwantami?? I co to ma wspólnego z zabezpieczeniami tranzakcji??
    A pozatym czy te kwantowe procesory są lepsze niż tych ileś tam rdzeni intela??
    Sorki za moje może proste pytanie ale nie czaje tych kwantów ;/

    A jeśli to takie dobre na zabezpieczenia to mam nadzieje że ktoś wykożysta to przeciw ludziom którzy mają naprawde gigantyczne pieniądze i kupują sobie polityków i rządy i przekażą te pieniądze na jakieś organizacje pomagające biednym i potrzebującym ludziom bo zbyt wielka przepaść jest między ludźmi na tym świecie. ;/

    Hehe ale zaleciało rewolucją ;/
    Mam nadzieje że nie doprowadzi to do jakiegoś chaosu na świecie
  • #3 03 Dec 2009 17:28
    EAndrzej
    Level 21  
    Helpful post? (0)
    Belialek wrote:
    W związku z perspektywą błyskawicznego rozkładu dużych liczb na iloczyn liczb pierwszych, zaczynałbym się poważnie martwić kwestią bezpieczeństwa wszelakich transakcji elektronicznych, i zaczął zastanawiać nad zabezpieczeniami, któremu nie dadzą rady komputery przyszłości.

    Źródło: Link


    Na szczęście jest również kryptografia kwantowa i np. algorytm Bennetta - Brassarda oczywiście nie jest jeszcze powszechnie stosowana w transakcjach w bankach dla zwykłych ludzi a tym bardziej w Polsce ale np. Pentagon i Biały dom już od 2002 roku łączy sie wyłącznie za pomocą łącz zaszyfrowanych z użyciem kryptografii kwantowej i nie jest to wcale takie trudne do wykonania w brew pozorom acz kol wiek niemożliwe do odszyfrowania nawet za pomocą komputera kwantowego :D.
  • #4 03 Dec 2009 17:55
    Belialek
    Level 22  
    Topic author Helpful post? (0)
    @Svir69:

    Generalnie tak w paru zdaniach na forum ciężko jest wyjaśnić zagadnienia fizyki kwantowej... Odniosę się natomiast do pytania dotyczącego zabezpieczeń transakcji.

    Na świecie najpopularniejszym (i na chwilę obecną najskuteczniejszym) jest zabezpieczenie transmisji poprzez klucze - do czołówki należą RSA, DSA oraz ECES. Pierwszy z nich korzysta z problemu złożoności obliczeniowej rozkładu dużych liczb całkowitych na czynniki pierwsze (w skrócie - złamanie kodu polega na przechwyceniu klucza i znalezieniu dwóch liczb pierwszych, które po przemnożeniu dadzą wynik który jest "wartością" klucza). Klucz DSA działa na podobnej zasadzie - tutaj jako problem który na dzień dzisiejszy jest praktycznie nie do złamania został wybrany logarytm dyskretny.

    I teraz tak:

    Najszybszy obecnie znany algorytm faktoryzacji który nadaje się do implementacji w komputerach tranzystorowych ma złożoność obliczeniową

    Code:
    exp [1.9(ln N)^1/3 * (ln ln N)^2/3]


    Komputerom tranzystorowym obecnej generacji obliczenie klucza RSA (na marginesie używanego nie tylko do finalizowania transakcji bankowych - na co dzień można go spotkać chociażby w protokole SSH) o długości 400 cyfr zajęło by w przybliżeniu 1000 lat.

    Tutaj z pomocą przychodzą algorytmy kwantowe - co ciekawe powstały one na długo przed pojawieniem się realnej szansy na budowę takiego komputera. Co dziwniejsze są one poprawne, i przystosowane do implementacji w komputerach kwantowych. Jednym z podstawowych jest algorytm Shore'a. Jego złożoność obliczeniowa jest znacznie mniejsza:

    Code:
    (ln N)^3


    Komputer kwantowy z zegarem zaledwie 100Mhz problem rozkładu klucza RSA o długości 400 cyfr rozwiązałby w około minutę, co już jest naprawdę wielkim niebezpieczeństwem dla poufności przesyłu danych.

    Na pocieszenie dodam, iż równolegle prowadzone są prace nad rozwojem technologii szyfrowania kwantowego mieszanego z AES - pierwsze modele takich urządzeń są już dostępne na rynku (ceny są zawrotne) a samym tematem warto się zainteresować, gdyż jest bardzo ciekawy no i jakby nie patrzeć bardzo przyszłościowy.


    EDIT:

    EAndrzej wrote:

    Na szczęście jest również kryptografia kwantowa i np. algorytm Bennetta - Brassarda oczywiście nie jest jeszcze powszechnie stosowana w transakcjach w bankach dla zwykłych ludzi a tym bardziej w Polsce ale np. Pentagon i Biały dom już od 2002 roku łączy sie wyłącznie za pomocą łącz zaszyfrowanych z użyciem kryptografii kwantowej i nie jest to wcale takie trudne do wykonania w brew pozorom acz kol wiek niemożliwe do odszyfrowania nawet za pomocą komputera kwantowego :D.


    Jasne, kryptografia kwantowa to niewątpliwie przyszłość bezpiecznej komunikacji - problem natomiast zaczyna się w momencie kiedy pierwsze użyteczne komputery kwantowe zostaną uruchomione, a praktycznie cała ludzkość będzie dalej bazowała na zabezpieczeniach stosowanych obecnie. W zasadzie swoisty "wyścig" o porządny komputer kwantowy jest zapewne traktowany priorytetowo - nawet bardziej niż kiedyś wyścig zbrojeń. W końcu pierwszy super komputer rozwiąże problem szpiegostwa wojskowego, zapewni kontrole nad satelitami, (_tutaj wpisz rzeczy nad którymi da się przejąć kontrolę_) oraz światową kasą. Brrr...
  • #5 04 Dec 2009 00:12
    petroTM
    Level 10  
    Helpful post? (0)
    Skomplikowanie to trochę brzmi. Na czym polega zasada działania takiego komputera? W standardowym tranzystorowym są dwa napięcia 0 i 3,3V lub 0 i 5V ew. jeszcze jakieś inne. A tutaj co jest wypromieniowany kwant energii albo niewypromieniowany? Bo jeśli tak to musi być jakiś generator, który to robi z jakąś określoną częstotliwością. Być może się mylę... Jak to w skrócie działa i co jest po co?
  • #6 04 Dec 2009 10:15
    mariusz_1992
    Level 11  
    Helpful post? (0)
    Na początku pragnę zaznaczyć, że moja wiedza zaprezentowana tutaj to tylko małe uściślenia jakie przekazał mi mój nauczyciel fizyki. Przekazuję to co wiem, a moje spostrzeżenia mogą jedynie nakreślić obraz pojęcia "komputer kwantowy" w głowach ludzi, którzy nigdy o nim nie słyszeli.

    Komputer kwantowy nie operuje na standardowych bitach - 1 i 0. W komputerze kwantowym istnieje coś takiego jak "kubit", nie ma on ustalonej wartości, jest jedynie przybliżoną wartością bliższą jedynce lub zeru, z czym, że wartości te ciągle podlegają transformacjom - można to zilustrować na przykładzie atomu (położenie elektronu w danej chwili wokół jądra atomu, jeśli znajduje się na krańcu północnym, to kubit jest traktowany jako jedynka, jeśli na południowym to jest traktowany jak zero, a jeśli gdzieś pośrodku to jest traktowany jako przybliżona wartość jednego z tych stanów). Komputer kwantowy wykonuje obliczenia z wartościami przybliżonymi, jego obliczenia są uzależnione od rachunku prawdopodobieństwa. Wynik działań komputera kwantowego nigdy nie będzie tak dokładny jak można to osiągnąć metodami matematycznymi, lecz im więcej obliczeń wykona taki komputer, tym wynik będzie bliższy prawidłowemu. Zauważyć jednak trzeba, że program, który z praktycznego punktu widzenia dla zwykłego komputera jest niemożliwy do wykonania (zbyt długi czas wykonywania) dla komputera jest osiągalny w ciągu np. kilku minut.

    Wyobraźmy sobie program typu:
    1. wylosuj dowolny ciąg zero-jedynkowy składający się z 2^100 bitów i zapisz go w pamięci
    2. wylosuj dowolny ciąg zero-jedynkowy składający się z 2^100 bitów i sprawdź czy jest równy ciągowi z kroku pierwszego
    3. jeśli tak - skończ program, jeśli nie - powtórz krok drugi i trzeci

    Zwykły komputer wykonałby dużo kroków, za każdym razem porównując wylosowane ciągi ze sobą. Komputer kwantowy nie losowałby wartości - mając na pokładzie 2^100 kubitów mógłby obliczenia wykonać znacznie szybciej, gdyż ciąg kubitów nie jest jednoznaczną wartością - każdy kubit może być zarówno jedynką i zerem. Oznacza to, że komputer poczekałby jakąś chwilę, aż jego kubity ustawią się w stany odpowiadające zadanemu przez program (w naszym przypadku pierwszy wylosowany ciąg liczb). Przewaga komputera kwantowego nad komputerem będzie tym bardziej widoczna im bardziej skomplikowane obliczenia trzeba wykonać.

    Na końcu trzeba dodać, że komputer kwantowy prawdopodobnie nigdy nie zastąpi standardowych pecetów jakie macie na swoich biurkach i za pomocą których przeglądacie to forum ;]
  • #7 04 Dec 2009 10:41
    Belialek
    Level 22  
    Topic author Helpful post? (0)
    mariusz_1992 wrote:

    Na końcu trzeba dodać, że komputer kwantowy prawdopodobnie nigdy nie zastąpi standardowych pecetów jakie macie na swoich biurkach i za pomocą których przeglądacie to forum ;]


    Pesymista :) A pamiętasz może jak nijaki B. Gates mówiąc o pamięci dostępnej dla użytkownika powiedział "640K ought to be enough for anybody"? Nie jest to oczywiście kwestia roku czy dwóch, ale ja mam nadzieję że w dożyje czasów kiedy komputer kwantowy będzie dostępny w supermarketach :)
  • #8 04 Dec 2009 14:42
    lekto
    Level 35  
    Helpful post? (0)
    Belialek wrote:
    mariusz_1992 wrote:

    Na końcu trzeba dodać, że komputer kwantowy prawdopodobnie nigdy nie zastąpi standardowych pecetów jakie macie na swoich biurkach i za pomocą których przeglądacie to forum ;]


    Pesymista :) A pamiętasz może jak nijaki B. Gates mówiąc o pamięci dostępnej dla użytkownika powiedział "640K ought to be enough for anybody"? Nie jest to oczywiście kwestia roku czy dwóch, ale ja mam nadzieję że w dożyje czasów kiedy komputer kwantowy będzie dostępny w supermarketach :)


    Nie zapomnijmy o tym że rdzeń czy jak to nazwiecie w komputerze kwantowym musi mieć temperaturę bliską zeru bezwzględnego i dopóki nie wymyślą jakiegoś schładzania to dupa z miniaturyzacją takiego komputera ;< potem jeszcze dochodzi problem jak ma działać dysk twardy do tego itp.
  • #9 07 Dec 2009 16:46
    Svir69
    Level 9  
    Helpful post? (0)
    Panowie Bardzo fajnie ale nawet jak uda się to cudo schłodzić i zminiaturyzować to jedno jest pewne ... Zawsze możecie liczyć na niebieski ekran w Windzie ;)
    Ale tak na poważnie to to szpiegostwo jest chyba największym napędęm do budowy komp kwantowych. Zdaje się że czytałem kiedyś taką książeczke .... chyba toma clansy-ego sory za braki w znajomości języka.
    Ale szpiegostwo zdaje się to napędza.
    Wyobraźcie sobie jak bardzo chiny pragną mieć coś takiego??
    Dziękuje za wyjaśnienia odnośnie działania nowej zabawki ;)
  • #10 30 Mar 2010 13:51
    a_marysiewicz
    Level 7  
    Helpful post? (0)
    \udało mi się znaleźć w temacie może kogoś zainteresuje... tutaj do pobrania\

    - KOMPUTERY KWANTOWE -
    W kluczowych momentach historii postęp cywilizacji wiązał się z odkryciem przez
    człowieka kolejnych sposobów wykorzystania natury. Gdy człowiek - myśliwy nauczył się
    uprawiać ziemie i hodować bydło - powstały pierwsze osady. Wykorzystanie pary
    doprowadziło do rewolucji przemysłowej. Zbudowanie komputera wreszcie doprowadziło do
    rewolucji informacyjnej. Nadszedł chyba czas porównywalnego skoku cywilizacji o
    porównywalnej wielkości. Fizyk David Deutch stwierdził, że dokona się to dzięki budowie
    maszyny liczącej nowego rodzaju. Maszyna ta będzie komputerem kwantowym. Będzie to
    przełomowym wydarzeniem dlatego, że zasada działania tego komputera wykorzystuje
    zjawiska Natury, których człowiek jeszcze do tej pory nie zbadał. Zjawiska te dotyczą
    "dziwnych" własności materii ujawniających się na poziomie atomów i kwantów. Komputer
    kwantowy mógłby wykonać rzeczy, o których programistom dzisiejszych komputerów się
    nawet nie śni.
    Dwudziesty wiek przyniósł idee, które zrewolucjonizowały nauki fizyczne. W
    konsekwencji tradycyjny obraz świata, wywodzący się jeszcze z czasów Newtona i
    Galileusza uległ radykalnej zmianie. Teoria względności Alberta Einsteina, posłużyła do
    opisu zachowania olbrzymich układów, będących przedmiotem badan astronomii. Z drugiej
    strony narodziny mechaniki kwantowej pozwoliło na modelowanie zjawisk zachodzących w
    mikroświecie i opis zachowania ciał o rozmiarach atomu.
    Od czasu gdy zbudowano pierwszy komputer elektroniczny, w technice komputerowej
    nastąpił olbrzymi postęp. Wyraża to prawo Moore’a, oparte na obserwacjach poczynionych
    w 1965 roku przez Gordona Moore’a, które stwierdza, że moc obliczeniowa komputerów
    podwaja się co półtora roku. I tak narodziło się pytanie: jak długo utrzyma się takie tępo
    rozwoju? Czy istnieją granice wydajności komputerów? Eksperymentując prawo Moore’a,
    można stwierdzić, że prędzej czy później każdy bit informacji będzie wymagał kodowania w
    układzie fizycznym o subatomowych rozmiarach. Niedawno jednak doniesiono o zbudowaniu
    układu umożliwiającego zapis informacji na siedmiu bitach na poziomie subatomowym. Opis
    tak małych układów wymaga jednak uwzględnienia efektów kwantowych.
    Na początku lat osiemdziesiątych XX wieku narodziła się idea komputera kwantowego,
    gdy naukowcy zaczęli zastanawiać się nad fizycznymi ograniczeniami możliwości budowy
    komputerów. Stało się oczywiste, że próbując "upakować" coraz więcej bramek logicznych i
    innych elementów układów scalonych na kawałku krzemowej płytki. Okazało się w pewnym
    momencie, że tranzystory są tak małe, że składają się tylko z garści atomów. I tu pojawia się
    problem: na poziomie atomów materia zachowuje się zgodnie z prawami mechaniki
    kwantowej. Innymi słowy - przestają obowiązywać klasyczne zasady, na których oparta jest
    zasada działania tranzystora, czyli także wszystkich bramek logicznych w układzie. Pojawiło
    się pytanie: czy można zbudować komputer wykorzystujący zasadę działania mechaniki
    kwantowej? Jednym z pierwszych naukowców, którzy próbowali odpowiedzieć na to pytanie,
    był fizyk Richard Feynman, który opublikował to w swojej pracy w 1982 roku. Wymyślił
    abstrakcyjny model, jak system kwantowy może być wykorzystany do przeprowadzania
    obliczeń. Zwrócił uwagę, że efektywna symulacja ewolucji czasowej układu kwantowego
    przy użyciu zwykłego komputera będzie niezwykle trudnym zadaniem.
    Pokazał on także, że gdyby obliczenia przeprowadzić na komputerze działającym zgodnie z
    zasadami fizyki kwantowej, to symulacje tego rodzaju byłyby łatwiejsze do zrealizowania.
    Inaczej mówiąc, można by było przeprowadzić eksperymenty z zakresu fizyki kwantowej
    wewnątrz komputera kwantowego.
    Rys. 1. Prawo Moore’a
    Właśnie dlatego badania dotyczące obliczeń kwantowych, czyli teoria obliczeń, w której
    informacja klasyczna zastąpioną jest jej kwantowym odpowiednikiem, stanowią tak
    interesujące wyzwanie.
    W roku 1985, w swojej publikacji Deutsch udowodnił, że właściwie każdy proces
    fizyczny może być modelowany za pomocą komputera kwantowego. Co więcej, komputer
    taki mógłby robić inne rzeczy, których robić nie mogą tradycyjne maszyny.
    Nowe możliwości otwierają się dzięki wykorzystaniu fenomenu równoległości (
    równoczesności) kwantowej. Równoległość ta dotyczy danego zjawiska zachodzącego
    równocześnie w wielu miejscach. Aby zrozumieć zasadę takiej równoległości, należy
    przypomnieć sobie sławny eksperyment z dwoma szczelinami, przeprowadzony w 1801 r.
    przez Thomasa Younga. Eksperyment wygląda następująco: bierzemy nieprzezroczysta
    płytkę, wycinamy w niej dwie wąskie szczeliny, w bliskiej odległości od siebie. Następnie
    oświetlamy płytkę źródłem światła, a za płytka stawiamy ekran. Na ekranie zamiast dwóch
    plamek mamy mnóstwo prążków. C jest tego powodem? Young wyjaśnia, że gdy światło w
    postaci fali dotrze do szczeliny, taka szczelina staje się źródłem światła. Prążki na ekranie to
    wynik interferencji fal pochodzących z dwóch szczelin: jeśli widzimy czarny prążek, to fale w
    tym miejscu są w 'przeciwfazie', czyli znoszą się. Jasny prążek natomiast oznacza zgodność
    faz, czyli fale wzmacniają się. Z drugiej strony dzisiaj wiemy już, że światło istnieje także w
    postaci cząsteczek, zwanych fotonami - mówimy o "korpuskularno - falowej naturze światła".
    Spróbujmy spojrzeć na eksperyment Younga od strony cząsteczkowej - co dzieje się z
    fotonem lecącym od źródła światła w kierunku ekranu?Każdy foton w jakiś magiczny sposób
    przelatuje przez dwie szczeliny jednocześnie - a jednak na ekranie wciąż widzimy go jako
    jedna, malutka plamkę. Eksperyment Younga do dziś pozostaje tajemnica, choć fizycy
    próbują wyjaśnić wspomniane zjawiska na różne sposoby. Tradycyjna interpretacja mówi, że
    obiekty kwantowe (takie, jak foton) mogą zachowywać się jak fale lub jak cząsteczki - w
    zależności od okoliczności. Lecz jest też inna wersja, znana jako "wiele wszechświatów"
    (many universes). Aby ja zrozumieć, musimy sobie wyobrazić, że każdy system kwantowy
    istnieje w wielowymiarowym wszechświecie, lub we wielu równoległych wszechświatach.
    Gdy obserwujemy pojedynczy foton przelatujący przez dwie szczeliny jednocześnie, to tak
    naprawdę w jednym wszechświecie foton przelatuje przez jedna szczelinę, a w drugim
    wszechświecie - przez druga. W ten sposób foton obrazuje zjawisko równoległości
    kwantowej - zachowuje się inaczej w różnych wszechświatach. We wspomnianej publikacji
    Deutsch rozwinął idee - skoro elektron może poruszać się różnymi drogami przez
    dwuszczelinowy aparat, wiec komputer też powinien być w stanie prowadzić obliczenia
    "różnymi drogami", w różnych wszechświatach. Czyli mały komputer kwantowy miałby
    możliwości wieloprocesorowej maszyny! Niestety jest jedno "ale" - nie można obserwować
    wyniku obliczeń wszystkich "ścieżek", bo są one w różnych wszechświatach. Jedyny sposób,
    żeby wykorzystać wyniki obliczeń równoległych, to pozwolić wszechświatom interferować
    ze sobą. W dwuszczelinowym eksperymencie interferencja zachodzi, gdy obserwujemy
    położenie fotonów na ekranie - podobnie możemy obserwować "zinterferowany" wynik
    działania komputera kwantowego. Wynikiem oczywiście nie jest wynik obliczeń w jednym
    wszechświecie, tylko suma (a raczej interferencja) wyników z różnych wszechświatów
    Po opublikowaniu pracy Deutscha w 1985 rozpoczęło się polowanie na jakiś ciekawy
    algorytm dla komputera kwantowego. Niestety wszystko, co wymyślono, to były raczej
    akademickie problemy, luźno związane z potrzebami, zainteresowaniami szarych
    śmiertelników. Jeśli komputer kwantowy miał mieć przed sobą jakaś przyszłość, potrzebował
    jakiegoś "zabójczego" algorytmu - czegoś pożytecznego, co jest możliwe do wykonania tylko
    za pomocą komputera kwantowego. I właśnie coś takiego wymyślił Peter Shor (1994 rok) -
    zastosowanie komputera kwantowego do rozwiązania ważnego problemu teorii liczb. Shor
    opracował najpierw zestaw operacji matematycznych wykonywalnych tylko na komputerze
    kwantowym, a następnie pokazał jak je użyć, by w bardzo krótkim czasie rozłożyć duża
    liczbę na czynniki pierwsze (czyli dokonać faktoryzacji) - znacznie szybciej, niż robią to
    tradycyjne komputery. Było to ważne gdyż jedna z popularnych metod szyfrowania
    informacji - metoda RSA-129 - działa w oparciu o fakt, że bardzo trudno jest rozłożyć wielka
    liczbę na czynniki pierwsze. Czyli każdy, kto ma dostęp do komputera kwantowego, mógłby
    złamać tajemnice rządów, wojska czy banków. Metoda RSA-129 wydawała się być
    bezpieczna aż do tego roku, gdy liczba komputerów podłączonych do Internetu przekroczyła
    1600. Ale nawet z tyloma komputerami złamanie kodu potrwałoby ponad 8 miesięcy. Jednak
    mimo tego szyfranci uspokajali się myślą, że zawsze mogą zwiększyć liczbę cyfr - bo ze
    wzrostem liczby cyfr problem rozkładu liczby rośnie ekspotencjalnie. Czyli wystarczy
    odpowiednio zwiększyć kod, a nawet szybki komputerek Shora nic nie zdziała.
    Najszybszy obecnie algorytm wymaga czasu
    Faktoryzacji liczby 400 cyfrowej wynosiłby 1010 lat
    Algorytm kwantowy Petera Shora wymaga czasu
    .
    Shor rzucił druga bombę: gdyby zbudować komputer kwantowy szybki tak, jak dzisiejsze
    PC, rozłożyłby on liczbę kodu RSA-129 w kilka sekund. Efektywność wynika stad, że
    sprawdzałby wiele liczb w tym samym czasie. Zadziwiająca rzeczą jest fakt, że tylko liczby
    prowadzące do właściwego wyniku pozytywnie ze sobą interferują, czyli wzmacniają się
    wzajemnie. Wszystkie inne liczby znoszą się. Algorytm Shora do obliczeń wykorzystuje
    wiele wszechświatów. Sprowadza się to do tego, że do rejestru pamięci wprowadza się nie
    jedna liczbę (jak w tradycyjnych komputerach), ale tyle, ile tylko rejestr może jednocześnie
    zmieścić. I dlatego właśnie obliczenia mogą być przeprowadzane równolegle. Takie pomysły
    brzmią wręcz nieprawdopodobnie! Ale jak tak naprawdę można zbudować taka maszynę?
    Jedna z możliwości to wykorzystanie "punktów kwantowych" - pojedynczych elektronów
    uwiezionych w klatce atomu. Gdy taki pojedynczy punkt poddamy działaniu impulsu światła
    laserowego o odpowiedniej długości i częstotliwości, jego elektron przechodzi w
    podwyższony stan energetyczny. Następny impuls powoduje powrót do stanu
    spoczynkowego. Podwyższony i spoczynkowy stan energetyczny elektronu mogą być
    traktowane jako 0 i 1. Czyli pojedynczy punkt elektronowy może być traktowany jako 1-
    bitowa pamięć lub rejestr. Każdy taki punkt zachowuje się też jak bramka NOT, ponieważ
    każdy impuls zmienia 1 na 0, lub 0 na 1. Wykorzystując bardziej skomplikowane konstrukcje
    z dwoma elektronami można zbudować bardziej rozbudowane funkcje logiczne, np.
    kontrolowany NOT. Pomijając realizacje techniczna, wymienione funkcje logiczne są
    podobne do tych znanych z tradycyjnych komputerów. Ale są rzeczy, które można zrobić z
    punktami kwantowymi, a których nie można powtórzyć w klasycznych systemach. I tu
    wkraczamy w dziwny świat "informatyki kwantowej".
    Rozważając bramkę NOT, aby zmienić wartość bitu na przeciwna, impuls światła musi mieć
    ściśle określoną długość i częstotliwość. A co się stanie, gdy impuls będzie trwał dokładnie
    przez polowe potrzebnego czasu? Zgodnie z prawami mechaniki kwantowej elektron
    przechodzi w "superpozycje stanów" - kombinacje stanu podwyższonego i spoczynkowego.
    W interpretacji "wielu wszechświatów" oznacza to, że w jednym wszechświecie punkt
    kwantowy (precyzyjniej: jego elektron) jest w podwyższonym stanie energetycznym, a w
    drugim wszechświecie - w spoczynkowym. Taka operacje możemy nazwać "pierwiastek z
    NOT", bo gdy powtórzymy operacje, otrzymamy NOT: sqr(NOT)*sqr(NOT)=NOT Podobnie
    możemy skrócić dwukrotnie czas impulsu dla operacji "kontrolowany NOT", otrzymując
    pierwiastek z kontrolowanego NOT. Obydwie funkcje pierwiastkowe maja istotne znaczenie
    dlatego, ze nie mogą być zrealizowane w tradycyjnych komputerach. Wymienione funkcje,
    wraz z kilkoma innymi, zbudowanymi tez z pary elektronów, pozwalają na budowę
    komputera kwantowego.
    Rys. 2.Bramka NOT
    Niestety technologia punktów kwantowych ma dwa duże ograniczenia. Do budowy
    komputera potrzeba co najmniej 100 000 punktów kwantowych w jednym układzie scalonym,
    a to o wiele więcej, niż jesteśmy w stanie dzisiaj zrobić. Drugi problem dotyczy czasu
    obliczeń komputera. Elektrony w podwyższonym stanie energetycznym przebywają najwyżej
    1 mikrosekundę. Przy czasie trwania impulsu laserowego równym 1ns, czasu wystarcza tylko
    na 1000 operacji logicznych, po czym pamięć komputera zostanie skasowana. Okazuje się
    jednak, ze w oparciu o algorytm Shora można zbudować "maszynę faktoryzujaca" z 20
    punktami kwantowymi dla rozłożenia liczb z zakresu 1 do 8 lub z ok. 2000 punktami, by
    rozłożyć liczbę kodu RSA-129. Jakie są szanse praktycznej realizacji tego pomysłu?
    Obecnie trudno wykonać fizycznie punkty kwantowe z powodu ich małych rozmiarów -
    zwykle ok 1nm, czyli wielkość 10 atomów. Z drugiej strony wiadomo, ze japońska firma
    Hitachi w wielkim sekrecie bada punkty kwantowe w nadziei wyprodukowania pamięci
    komputerowych ultrawysokiej skali integracji. Czyli możliwości technologiczne mogą
    pojawić się wcześniej, niż myślimy.
    Maszyna faktoryzujaca stawia też pewne wymagania co do użycia laserów. Aby uniknąć
    naświetlania kawałka płytki przez tysiące laserów, każdy punkt można by zrobić tak, by
    reagował tylko na określoną częstotliwość fali elektronowej. Do sterowania maszyna
    wystarczyłby tylko jeden laser pod warunkiem, że może on być precyzyjnie przestrajany do
    różnych częstotliwości w bardzo krótkim czasie, zgodnie z zadanym programem. Nie
    wszyscy jednak uważają pomysł budowy maszyny faktoryzujacej za realny. Głowna
    przeszkoda miałyby być defekty konstrukcji oraz zakłócenia termiczne. Jednak Deutsch
    twierdzi, ze nie ma to istotnego znaczenia - nawet, jeśli maszyna będzie pracować tylko przez
    0.1% czasu poprawnie, algorytm Shora jest na tyle szybki, ze można sobie pozwolić na
    uruchomienie maszyny tysiąc razy, by otrzymać jeden prawidłowy wynik. Sprawdzenie
    wyniku jest bardzo proste. Jeśli wynik jest niepoprawny liczymy od nowa. Wiec czy przed
    komputerem kwantowym jest przyszłość? Spory na temat wpływu szumów nie zostały
    rozwiązane. Jeśli problem ten będzie rozwiązany, pojawia się następne pytanie: co jeszcze
    komputer kwantowy może robić? Właściwość operacji równoległych komputera sugeruje, ze
    można by wykorzystać go do prognozowania pogody czy do modelowania klimatu, ze
    względu na olbrzymia ilość informacji przetwarzanych w tych procesach. Jednak nie jest
    pewne, czy równoległość osiągana w komputerach kwantowych wystarczy do rozwiązania
    tego typu problemów. Niezależnie od tego Deutsch jest przekonany, ze przed komputerami sa
    jeszcze znaczace zadania do wykonania. Bo pomyslmy: co odpowiedzieliby twórcy
    pierwszych komputerów na pytanie "Jaki pożytek bedzie z komputerów"? Odpowiedz
    brzmiałaby zapewne: "Cóż, łatwiej bedzie obliczac tablice logarytmiczne". Nikt nie myslał o
    edytorach tekstu, bazach danych, robotach przemysłowych czy sieciach komputerowych. Nikt
    nie myslał o Wirtualnej Akademii. Może wiec maszyna faktoryzujaca tez bedzie taka
    pierwsza jaskółka?
    Na podstawie: ”Algorytmy kwantowe” Mike Hiervensalo, Julian Brown A Quantum
    Revolution for Computing - New Scientist, 24 September 1994
Mouser  Search 4 million + Products
Browse Products