X

Jak wyznaczyć skalę logarytmiczną?

przywódca 20 Nov 2005 17:19
  • #1 20 Nov 2005 17:19
    przywódca
    Level 10  
    Helpful post? (+1)
    Mam pytanie co to jest skala logarytmiczna i jak to sie liczy?
  • #2 20 Nov 2005 18:20
    zabex
    Level 22  
    Helpful post? (0)
    Linia z oznaczonymi punktami odniesienia (podziałka), na której odległość od jej początku do któregokolwiek takiego punktu jest proporcjonalna do logarytmu liczby przyporządkowanej temu punktowi; odwzorowanie osi liczbowej x o podziałce logarytmicznej na oś u o podziałce liniowej jest dane funkcją u = lg x.
  • #3 20 Nov 2005 18:27
    przywódca
    Level 10  
    Topic author Helpful post? (0)
    Czyli przykładowo jeżeli mam przy wzmacniaczu operacyjnym charakterystykę Ku=f(f) i dla f mam zastosować skalę logarytmiczną to jak mam zlogarytmować f ?
  • #4 20 Nov 2005 18:33
    TWK
    Specjalista elektryk
    Helpful post? (0)
    przywódca wrote:
    Czyli przykładowo jeżeli mam przy wzmacniaczu operacyjnym charakterystykę Ku=f(f) i dla f mam zastosować skalę logarytmiczną to jak mam zlogarytmować f ?


    Nic nie musisz logarytmować! Najlepiej kupić papier "półlogarytmiczny" i na nim wykonać wykres. Ew. wykonać go w Excelu ustawiając na osi odciętych skalę logarytmiczną.

    Pozdrawiam
    TWK
  • #5 20 Nov 2005 18:39
    przywódca
    Level 10  
    Topic author Helpful post? (+1)
    to pierwsze odpada - wszystko pozamykane, to drugie nie przejdzie - mój nauczyciel nie uznaje wykresów z exela. Został mi tylko papier milimetrowy więc jak mam to na nim wykonać?
  • #6 20 Nov 2005 18:47
    TWK
    Specjalista elektryk
    Helpful post? (+2)
    przywódca wrote:
    to pierwsze odpada - wszystko pozamykane, to drugie nie przejdzie - mój nauczyciel nie uznaje wykresów z exela. Został mi tylko papier milimetrowy więc jak mam to na nim wykonać?


    Masz madrego nauczyciela. Musisz stworzyć nową skalę na osi odciętych. Skala będzie nieliniowa. Robisz to w następujący sposób:

    Dla przykładu ustalmy długość dekady równą 10 cm.

    W związku z tym:
    1 = 0 cm
    2 = 3 cm
    3 = 4,8 cm
    4 = 6,0 cm
    5 = 7,0 cm
    6 = 7,8 cm
    7 = 8,5 cm
    8 = 9 cm
    9 = 9,5 cm
    10 = 10 cm

    i dalej:
    10 = 10 cm
    20 = 13 cm
    30 = 14,8 cm
    40 = 16,0 cm
    50 = 17,0 cm
    60 = 17,8 cm
    70 = 18,5 cm
    80 = 19 cm
    90 = 19,5 cm
    100 = 20 cm

    200 = 23 cm
    i tak dalej i tak dalej... Pamiętaj, że skala logarytmiczna nie ma zera!!! Możesz oczywiście przyjąć inną długość dekady.

    Pozdrawiam TWK
  • #7 20 Nov 2005 19:34
    Aleksander_01
    Level 39  
    Helpful post? (+1)
    Witam
    A przypadkiem nie tak jak na rysunku
    Pozdrawiam
  • #8 20 Nov 2005 19:57
    szymon188
    Level 21  
    Helpful post? (0)
    Mialem podobny problem.Moja nauczycielka nie uznaje wykresow z excela,a papier milimetrowy pollogarytmiczny bardzo ciezko dostac.Przynajmniej w Opolu.Poradzilem sobie w ten sposob,ze wydrukowalem z excela tylko skale,a wykresy robie recznie.
  • #9 20 Nov 2005 20:49
    TWK
    Specjalista elektryk
    Helpful post? (0)
    Aleksander_01 wrote:
    Witam
    A przypadkiem nie tak jak na rysunku
    Pozdrawiam


    Tak, dokładnie tak, tylko na rysunku masz liczby: 1, 10, 1000, 10000 itd. Ja napisałem, jak znaleźć też punkty pomiędzy. Bez tego dobrego wykresu nie wykonasz. A papier logarytmiczny rzeczywiście kupić trudno i jest cholernie drogi.

    Pozdrawiam
    TWK

    PS Oczywiście na osi oznaczamy 1, 10, 100, 1000, a nie 0, 1, 2, 3. Taki wykres byłby kompletnie nieczytelny. To najczęstszy powód odrzucenia sprawozdań z wykresem w skali logarytmicznej.
  • #10 21 Nov 2005 16:23
    Paweł Es.
    Pomocny dla użytkowników
    Helpful post? (+1)
    Ogólnie to robisz tak:

    W układzie logarytmicznym dowolną częstotliwość można zapisać w postaci wykładniczej:

    3$F=x*10^d

    d - dekada (cecha)
    x - mnożnik (mantysa)

    np.

    120 Hz = 1.2*10^2
    2350 Hz =2.35*10^3

    itd.

    aby zapisać to w skali równomiernej trzeba z takie wartości policzyć
    logarytm o podstawie 10 zwany też przez lud szkolny dziesiętnym.

    Kolejne przekształcenia zgodnie z rachunkiem logarytmów

    log(F)=log(x*10^d)=log(x)+log(10^d)=log(x)+d*log(10)=log(x)+d

    otrzymaną wartość mnożymy przez stałą określającą szerokość dekady.

    Odległość punktu od przecięcia osi X z Y:

    L=A*(log(x)+d) = A*log(x)+A*d

    masz w powyższym dwa składniki:

    pierwszy A*log(x) opisuje odległość punktu od początku dekady

    drugi A*d opisuje odległość początku dekady od osi Y.

    log - logarytm dziesiętny z liczby x !!! (dziesiętny nie naturalny)

    A - długość odcinka jednej dekady:

    punkt w dekadzie -> odległość od początku dekady (czyli od 1,10,100,1000, itd - oczywiście d może być ujemne czyli wartości dekad mogą być np. 0.01, 0.1, 1, 10 itd)

    1-> A*0
    2-> A*0.301
    3-> A*0.477
    4-> A*0.602
    5-> A*0.699
    6-> A*0.778
    7-> A*0.845
    8-> A*0.903
    9-> A*0.954
    10->A*1.000

    Ten sam podział powtarza się we wszystkich dekadach.

    Jeżeli potrzebujesz innych wartości np. musisz umieścić na skali 180 Hz
    to liczysz sobie log(180)=2,255 mnożysz przez stałą A i masz odległość od osi Y.

    2.255=log(1.8)+log(100)=log(1.8)+2

    Druga metoda sprowadzasz 180 (lub inną wartość) do zakresu 1 do 10 (czyli tu musisz wartość podzielić przez 100) otrzymujesz 1.8.
    Liczysz z tego log(1.8)=0.255 mnożysz wynik przez stałą A i otrzymujesz odległość od początku dekady (100÷1000)

    Otrzymane z mnożenia wartości zaokrąglasz do wartości całkowitych w sposób następujący:

    jeżeli ułamek po przecinku jest >= 0.5 to zaokrąglasz w górę:

    np.

    8.85 zaokrąglasz do 9.00
    6.5 -> 7.00

    jeżeli ułamek jest mniejszy niż 0.5 to zaokrąglasz w dół:

    np.

    7.39 zaokrąglasz do 7.00
    2.49 -> 2.00

    8-)

    [Zamykam. 05.05.2008. Mariusz Ch.]
  Search 4 million + Products
Browse Products