Ad p2
Transmitancję filtru możesz zapisać w postaci
[ \sum_{k=0}^M b_{k}z^{-k}]
H(z)= ---------------------------------------
[1-\sum_{k=1}^N a_{k} z^{-k}]
Możesz wyróżnić mianownik i licznik, odpowiedź impuslową układu dyskretnego możesz wyznacznyć przy użyciu funkcji "dimpulse"
DIMPULSE(NUM,DEN) plots the impulse response of the polynomial
transfer function G(z) = NUM(z)/DEN(z) where NUM and DEN contain
the polynomial coefficients in descending powers of z.
Inny sposób to podanie na wejście 1 i przefiltrowanie sygnału
[B,A] = YULEWALK(N,F,M);
u=[1 zeros(1,N-1)];
imp=filter(B,A,u);
Jesli chodzi o pierwsze pytanie nie bardzo wiem, co chcesz zrobić.
Przeczytaj w helpie na temat filtrów, dla pojedyńczego pasma fir1, butter;
dla większej ilości fir2, yulewalker -dla analizy w dziedzinie częstotliwości oraz prony, lpc dla dziedziny czasu.