Signal Integrity Issues and Printed Circuit Board Design
By Douglas Brooks
In this book, renowned engineer,author, and seminar leader Douglas Brooks teaches PCB designers how tosuccessfully design boards for any high-speed application. Brooks begins withan easy-to-understand electronics primer for every PCB designer, then offerspractical, real-world solutions for every important signal-integrity problem.Based on his legendary seminars, this book offers even more design rules,specific recommendations, examples, illustrations, and diagrams.
Coverage includes—
Essential electronics concepts: propagation, current, resistance, reactance, impedance, phase shifts, and more
EMI principles and controls: loop area, uncontrolled differential currents, and common mode currents
Controlling signal reflections: transmission lines, proper terminations, and trace layer design
Power system stability (bypass capacitor decoupling): Traditional approaches, and techniques based on power-system impedance
Eliminating forward crosstalk, and eliminating or controlling backwards crosstalk
Power-system conditioning: power-system plane design and correct board stackups
Lossy lines and eye diagrams: skin effects, dielectric absorption, and more
Two full chapters of simulationillustrations—ideal for thosewithout access to high-speed simulation tools
By Douglas Brooks
In this book, renowned engineer,author, and seminar leader Douglas Brooks teaches PCB designers how tosuccessfully design boards for any high-speed application. Brooks begins withan easy-to-understand electronics primer for every PCB designer, then offerspractical, real-world solutions for every important signal-integrity problem.Based on his legendary seminars, this book offers even more design rules,specific recommendations, examples, illustrations, and diagrams.
Coverage includes—
Essential electronics concepts: propagation, current, resistance, reactance, impedance, phase shifts, and more
EMI principles and controls: loop area, uncontrolled differential currents, and common mode currents
Controlling signal reflections: transmission lines, proper terminations, and trace layer design
Power system stability (bypass capacitor decoupling): Traditional approaches, and techniques based on power-system impedance
Eliminating forward crosstalk, and eliminating or controlling backwards crosstalk
Power-system conditioning: power-system plane design and correct board stackups
Lossy lines and eye diagrams: skin effects, dielectric absorption, and more
Two full chapters of simulationillustrations—ideal for thosewithout access to high-speed simulation tools
