Mam przykładowy projekt ze strony TI : adc_seqmode_test.
Jest to przykład próbkowania przez kanał A0. Które części w kodzie muszę zmienić, żeby procesor próbkował mi z kanału BO?
Na razie wywnioskowałem, że w pliku Example_281xAdcSeqModeTest.c
trzeba chyba zmienić linijki:
SampleTable[i] =((AdcRegs.ADCRESULT0>>4) );
na
SampleTable[i] =((AdcRegs.ADCRESULT8>>4) );
(choć nie jestem przekonany czy tu trzeba coś zmieniać)
oraz
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
na
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x8;
Ale na razie bez efektów. Mam kwarc 20 MHz i w pliku DSP281x_Examples.h ustawiłem:
#define CPU_RATE 10.000L // for a 100MHz CPU clock speed (SYSCLKOUT)
Przykład jest niby na 150 MHz, a co za tym idzie na próbkowanie z częstotliwością 12,5 MSPS. Ale to po prostu tylko powinien mi układ próbkować wolniej o 1/3 chyba i to wszystko.
Wklejam kod tego pliku źródłowego do próbkowania:
Jest to przykład próbkowania przez kanał A0. Które części w kodzie muszę zmienić, żeby procesor próbkował mi z kanału BO?
Na razie wywnioskowałem, że w pliku Example_281xAdcSeqModeTest.c
trzeba chyba zmienić linijki:
SampleTable[i] =((AdcRegs.ADCRESULT0>>4) );
na
SampleTable[i] =((AdcRegs.ADCRESULT8>>4) );
(choć nie jestem przekonany czy tu trzeba coś zmieniać)
oraz
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
na
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x8;
Ale na razie bez efektów. Mam kwarc 20 MHz i w pliku DSP281x_Examples.h ustawiłem:
#define CPU_RATE 10.000L // for a 100MHz CPU clock speed (SYSCLKOUT)
Przykład jest niby na 150 MHz, a co za tym idzie na próbkowanie z częstotliwością 12,5 MSPS. Ale to po prostu tylko powinien mi układ próbkować wolniej o 1/3 chyba i to wszystko.
Wklejam kod tego pliku źródłowego do próbkowania:
// TI File $Revision: /main/2 $
// Checkin $Date: April 28, 2005 15:17:26 $
//###########################################################################
//
// FILE: Example_281xAdcSeqModeTest.c
//
// TITLE: DSP281x ADC Seq Mode Test.
//
// ASSUMPTIONS:
//
// This program requires the DSP281x V1.00 header files.
// As supplied, this project is configured for "boot to H0" operation.
//
// Make sure the CPU clock speed is properly defined in
// DSP281x_Examples.h before compiling this example.
//
// Connect the signal to be converted to channel A0.
//
// DESCRIPTION:
//
// Channel A0 is converted forever and logged in a buffer (SampleTable)
//
// Open a memory window to SampleTable to observe the buffer
// RUN for a while and stop and see the table contents.
//
// Watch Variables:
// SampleTable - Log of converted values.
//
//###########################################################################
// $TI Release: $
// $Release Date: $
//###########################################################################
#include "DSP281x_Device.h" // DSP281x Headerfile Include File
#include "DSP281x_Examples.h" // DSP281x Examples Include File
// ADC start parameters
#define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25MHz
#define ADC_CKPS 0x1 // ADC module clock = HSPCLK/2*ADC_CKPS = 25MHz/(1*2) = 12.5MHz
#define ADC_SHCLK 0xf // S/H width in ADC module periods = 16 ADC clocks
#define AVG 1000 // Average sample limit
#define ZOFFSET 0x00 // Average Zero offset
#define BUF_SIZE 2048 // Sample buffer size
// Global variable for this example
Uint16 SampleTable[BUF_SIZE];
main()
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP281x_SysCtrl.c file.
InitSysCtrl();
// Specific clock setting for this example:
EALLOW;
SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK
EDIS;
// Step 2. Initialize GPIO:
// This example function is found in the DSP281x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP281x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP281x_DefaultIsr.c.
// This function is found in DSP281x_PieVect.c.
InitPieVectTable();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP281x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
InitAdc(); // For this example, init the ADC
// Specific ADC setup for this example:
AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK;
AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
AdcRegs.ADCTRL1.bit.SEQ_CASC = 1; // 1 Cascaded mode
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x8;// to zmieniłem
AdcRegs.ADCTRL1.bit.CONT_RUN = 1; // Setup continuous run
// Step 5. User specific code, enable interrupts:
// Clear SampleTable
for (i=0; i<BUF_SIZE; i++)
{
SampleTable[i] = 0;
}
// Start SEQ1
AdcRegs.ADCTRL2.all = 0x2000;
// Take ADC data and log the in SampleTable array
while(1)
{
for (i=0; i<AVG; i++)
{
while (AdcRegs.ADCST.bit.INT_SEQ1== 0) {} // Wait for interrupt
// Software wait = (HISPCP*2) * (ADCCLKPS*2) * (CPS+1) cycles
// = (3*2) * (1*2) * (0+1) = 12 cycles
asm(" RPT #11 || NOP");
AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;
SampleTable[i] =((AdcRegs.ADCRESULT8>>4) ); //tu zmieniłem
}
}
}
//===========================================================================
// No more.
//===========================================================================
